
Windows NT Rootkits
Cosmin Stejerean

cstejerean@gmail.com

Monday, January 17, 2011

What is a rootkit?
A rootkit is a set of programs which
PATCH and *TROJAN* existing
execution paths within the system.

– Greg Hoglund

Involves itself in preexisting
architecture so that it goes unnoticed

Monday, January 17, 2011

What is a rootkit… (cont)
Netbus, SubSeven and Back Orifice
are not rootkits.

A rootkit could however be used
however to hide their presence.

Monday, January 17, 2011

What can a rootkit do?
Hide processes
Hide files or file contents
Hide registry keys and values
Hide open ports
Create and/or hide a backdoor
Sniff network traffic or key presses
Etc… there are many possibilities

Monday, January 17, 2011

How does a rootkit work?
Before we can answer that we need
to identify the two types of rootkits

–User mode rootkits
Intercept system calls of other processes

–Kernel mode rootkits
Patches the kernel

Monday, January 17, 2011

User mode Rootkits

 +-------------------------------+ - offset 0
 | MS DOS Header ("MZ") and stub |

 +-------------------------------+

 | PE signature ("PE") |

 +-------------------------------+

 | .text | - module code

 | Program Code |

 | |

 +-------------------------------+

 | .data | - initialized (global static) data

 | Initialized Data |

 | |

 +-------------------------------+

 | .idata | - information for imported functions

 | Import Table | and data

 | |

 +-------------------------------+

 | .edata | - information for exported functions

 | Export Table | and data

Monday, January 17, 2011

User mode Rootkits
Must ‘patch’ all running processes as
well as processes that will be created
in the future
Lists all running processes and
intercepts the API calls that we want
to modify
To hook future processes we modify
the NtResumeThread and
LdrInitializeThunk

Monday, January 17, 2011

User mode Rootkits … (cont)
These functions are called whenever
a new processes is created
We can then modify the memory
space of the new processes before it
begins to execute
This way we can patch all processes
on a system

Monday, January 17, 2011

User mode Rootkits … (cont)
To hide files we patch
NtQueryDirectoryFile and
NtVdmControl to exclude any files we
want to hide from being returned
To hide processes we modify the
return value of
NtQuerySystemInformation

Monday, January 17, 2011

User mode Rootkits … (cont)
We can use similar techniques to
hide keys in the registry, hide open
ports, etc

How can a process hook an API Call?

Monday, January 17, 2011

Hook API Calls
Every running process has a copy of
the kernel as well as any DLLs that
were loaded when the program
started
This contains pointers to the actual
DLL functions
We can change these pointers to
point to our own modified function

Monday, January 17, 2011

Hook API Calls… (cont)
We can either implement a new
function or run the original function
and modify the value it returns
The key is to locate where in the
process’s memory the function
pointer resides
We can also modify the actual
function by patching it’s first 5 bytes
with a jmp instruction

Monday, January 17, 2011

Hook API Calls… (cont)
We can also load arbitrary code or
DLLs into running processes
If the code runs with Administrator
privileges we can access the memory
of any process
We can then write our code to it and
call the CreateRemoteThread
function to run our code

Monday, January 17, 2011

Kernel Mode Rootkits
Instead of modifying each new
process we can modify the kernel
We can modify the code of kernel
functions to provide desired
functionality
We can modify kernel data structures
to hide running processes

Monday, January 17, 2011

Interesting things to modify in
the kernel

GINA.dll – the login screen (capture
passwords)
LSA (Local System Authority) –
backdoors
SST, IDT – add new system services
to modify system functionality
SRM – Change the way access
control works

Monday, January 17, 2011

Wow, that’s pretty bad…
So how can I detect these ‘rootkits’?
This is very hard to do and it
depends on which rootkit you are
trying to detect.
Can use data structures and
functions that you ‘hope’ were not
altered

Monday, January 17, 2011

Detecting rootkits… (cont)
Detect hidden files by listing all files
from the OS and then booting from a
CD or another trusted OS and listing
the files that way then compare the
differences
Access the system hive and compare
the entries with entries in the
registry

Monday, January 17, 2011

Detecting rootkits… (cont)
List running processes using low
level system calls instead of API
Use some commercial software that
might do some of the above…

Monday, January 17, 2011

Rootkit detectors
F-Secure BlackLight
Sysinternals RootkitRevealer
UnHackMe
RootKit Shark
RegdatXP
Malicious Software Removal Tool
Flister
Find Hidden Service
Kernel SC
Kernel PS
Klister
Process Magic
KProcCheck
TaskInfo

Monday, January 17, 2011

Bad news…
Hacker Defender Gold (paid version)
cannot be detected by any of them
Best solution is to analyze the
system from a CD (Knoppix or
Windows PE)

Monday, January 17, 2011

For more info
http://www.rootkit.com
“A real NT rootkit” – Greg Hoglund
“Hooking Windows API” – Holy Father
“Invisibility on NT boxes” – Holy Father
Rootkits: Subverting the Windows Kernel –
Greg Hoglund and Jamie Butler

Monday, January 17, 2011

http://www.rootkit.com/
http://www.rootkit.com/

