Detecting Rootkits

Cosmin Stejerecan

What are rootkits

m A rootkit 1S a set of programs and code that
allow a permanent or consistent, undetectable
presence on a computer

m A rootkit 1s not an exploit, a trojan or a virus
although 1t can make use of all of these
technologies for delivery.

How do rootkits work?

n A rootkit hides by mtercepting and altering
communications at the mterfaces between
various OS components.

Irterface Intetface

Operating System

[ntetface

Affected Components

n [/O Manager

n Device & File System Drivers
n Object Manager

m Security Reference Monitor

m Process & Thread Manager

a Configuration Manager

Hardware Background

m X306 chips uses rings {or acecess control

s Rings are 0 — 3 although Windows uses only
Ring 0'and Ring 3

m Software cannot access any rings with lower
numbers

m This 1s used for memory-access restrictions

s Ring 0 can execute privileged operations

User Mode

Kemel Mode

Ring 2

tow [3 | 2] 1] o[

Privilege Level

Important Tables

n Global Descriptor Table (GDT)

s [ocal Descriptor Table (LDT)

n Page Directory

s [nterrupt Descriptor Table (1IDT)

m System Service Dispatch Table (SSDT)

Virtual Memory

0x00000000

Application code
Global variables
Per-thread stacks
DLL code

OXTFFFFFFF

0x80000000 Ntoskrnl

HAL
Boot drivers

Process page tables

System cache
Paged pool

Nonpaged pool
OxFFFFFFFF pagedp

Virtual Memory

Separate virtual and physical address spaces.

Virtual & physical address spaces are managed by
dividing them into fixed size blocks.

*The OS handles virtual to physical block mappings.

oVirtual-address space may be larger than physical
address space.

*Virtually contiguous memory blocks do netthave to
be physically contiguous.

Virtual Memory LLookups

KPROCESS

Virtual Address

Page Directory Index

Page Table Index

Byte Index

|__Physical
CR3 address

Page Directory

- -

Page Table

Physical Memory

(1 per process)

PFN

(up to 512 per process)

Userland Hooking

n [mport Address Table hooking
= Stmpler but easier to detect

s Some problems due to DL binding time
n [nline Function Hooking

s More powerful but more complicated

IAT Hooking

s When code uses external DLILs the IAT stores
a pointer to, the location of each imported
external function

n Once a rootkit binds to the memory space of a
process it can replace some entries i this table
1o point to rootkit functions

s Most API calls are in this table and can be
hooked

Inline Hooks

m The rootkit saves the first several bytes of a
function and replaces it with a *jump’™
mstruction

m 'his transfers control to the rootkit’s function
and the rootkit can the call the original
function and filter the results

Kernel Hooks

s Hooking the SSDT

SSDT

n Used to lookup functions to handle a given
system call

n Rootkits can hook mto this processing to snift
data, alter arguments or redirect the system call

IDT

s [he [DT 1S used to locate the function that waill
handle a given mterrupt

n This can be modified to allow user level
programs to communicate with the rootkit
running in the kernel or to sniff regular
mterrupts

m Problem because these are passthrough
functions

Driver Hooking

n Can hook the major 1O functions provided by a
driver

m Also pass-through functions but can use
callback functions

Other Methods

s Runtime patching by replacing code m
MEemory,

n [Layered drivers

s Modifying in kernel memory: structures, such as
the linked list of active processes or threads

n Hardware manipulation

Fighting Rootkits

m Many ways for rootkits to operate
s The OS cannot be trusted
n This makes rootkit detection nearly impossible

s [t doesn’t mean we don’t have to try. ..

Prevent rootkits

m Need to detect rootkits bemg imstalled

s [nvolves hooking a large number of functions
to detect all possible entry points

m Even if this can be done 1t 1s still hard to tell
that the software 1s malicious

s This would require signatures but this cannot
guard against new attacks

Detection

m Scan the memory for patterns (there are
already counter measures for this)

n Check the operating system for hooks

n [Locating mline hooks can be very pamiful since
it requires disassembling the functions

Detecting hooks

n Get the address range of known kermel
modules

s Check for functions that should fall within this
address space but do not

s However not only malicious software will
have hooks

Detecting inline hooks

m [T 1S possible to check the first few bytes oif
cach function for unconditional jumps and
check 1f the destination 1s within acceptable
address range

More Detection...

n [racing
s Have a clean baseline of the system

n [race system calls m the future and watch for extra
mstructions

s Behavior

s Most promising method
» [Looks for odd behavior i the OS (*lies™)

Detecting Hidden Processes

s Hook SwapContext and when a new: thread 1s
bemg swapped 1 verity that 1t exists m: the

linked list of active threads or verity agamst
call from API

n Get an entry for a process and use this to get
the list of all handles. Each handle references
the process it belongs to.

Detecting other items

n Stmilar techniques can be used to find
modifications to the registry and file system

Other solutions for detection

m Scan from miected system and compare with
scan from clean system

n Direct memory access using UDMA while
System 1S running

n There are still many problems with these
approaches

Conclusion

n Don’t get hacked m the first place and 1t you
do WIPE the system.

